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Three kinds of intermittency in a nonlinear mechanical system
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Department of Mechanical Engineering, Indian Institute of Technology, Kanpur Uttar Pradesh 208016, India
(Received 21 August 1995

All three different types of classical, Pomeau-Manneville intermittencies along with a fourth kind following
a subcritical pitchfork bifurcation have been identified in a single mathematical model. The mathematical
model corresponds to a van der Pol oscillator with an impact damper.

PACS numbe(s): 05.45+b, 62.30+d

[. INTRODUCTION tive collisions can be written in the following nondimen-
sional form:
Nonlinear systems are capable of exhibiting different . .
kinds of instabilities and catastrophes which lead to compli- Zy+eZy(Z5-1)+Z,=Fcog Q2 7) (1a)

cated dynamic evolutions. Intermittency catastrophes occup
an important place in the whole spectrum of these dynami
complexities. A temporal intermittency signature is charac- 5 _ 7 |<
terized by phases of regular oscillatigso called laminar Zp=0 v|z, Zp| do (1b)
phaseginterrupted by chaotic bursts. A comprehensive theoyith o =(K1/m1)1’2, Xo:\/g_. Q=wlwy, F0=F/(mlxow§)
retical model of intermittency was put forward by Pomeaus=e1x0/(mlw0), Zy=x4/Xg, Zy=Xal%g, dg= 02Xy, T=wqt
and Mannevill(PM mode) [1-3]. Three catastrophitsub- 414 the dot denotes differentiation with respecttdt may

critical) local bifurcations viz., saddle-node, Hopf, and sub-pe noted tham, is assumed to be a free particle, except at
harmonic bifurcations are known to generate three types e instants of collisions.

PM int_ermitten_cies viz.,_type I,_II, anq I, rgsp_ectively._ Ob- When|Zl—Zp|=do, a collision occurs satisfying the fol-
servations of different kinds of intermittencies in experimen-joying conditi

nd

tal and theoretical modelgt—7] have supported the above ons: . _ .
mentioned theory. It is now known that many hydrodynamic Zi=a,Z,+ azz;,
instabilities(as well as solid-mechanical and electrical insta- . _ .
bilities) are related to these intermittencies. But no single zf:asz‘;+a4z;,

model is known to demonstrate all the three kinds of PM

intermittencies. It would be interesting to observe these in-

termittencies in a single model. The purpose of this paper is F cos w1 3_’ . x
to discuss such a model consisting of a van der Pol type . e
mechanical oscillator with an impact damper. Apart from the
three types of PM intermittencies, another new kind of inter-
mittency caused by a subcritical symmetry-breaking bifurca- 9z 192

tion is also observed in this model. ™ @

{x2 = ’
Il. EQUATIONS OF MOTION &0 -9 O

An impact damper in the form of a loose secondary mass (0)
is often used to control the vibrations of a mechanical oscil-
lator which may be linear, nonlinear or self-excitggl. In
this paper, the primary vibrating system is modeled as a me- F cos ot 2_.»)(. X2
chanical oscillator consisting of a mag8s,), a linear spring —
(of stiffnesskK;) and a damper exerting a nonlinear, van der K,
Pol type damping force. This system is shown in Fi(p) 1
where the prime denotes differentiation with respect to time
t. The massn, is excited by a harmonic forde coswt. The A
loose secondary mass, goes into repeated collisions with - T} -
both ends of the containcéf_ixed tom,) of lengthd. In this & O - g)¥ 5;2 Cs /77@7 Ca
process the response wi; is controlled by transfer of mo-
mentum and dissipation of energy. The differential equations
describing the motion of the system between two consecu- )

d/2 d/

FIG. 1. van der Pol oscillator with an impact damp@y. Zero
Electronic address: akmallik@iitk.ernet.in contact timeb) finite contact time.
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FIG. 2. Windows of periodic solutions ix—d, plane.r,=0.1,
e=0.1. Regions of periodic solutions are labeled by 1 and 2. o
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where the superscripts- and — denote, respectively, the

conditions after and before impacts. Using the conservation fm
of total linear momentum and the definition of the coefficient

of restitution it is easy to obtaim;’s as follows: FIG. 4. Bifurcation set im,—do plane.Q=1, x=0.7,F=0.5,

€=0.1. The zone enclosed between the lidd8 and CD corre-
sponds to stable symmetric motion with two impacts per cysR.
and CD correspond to supercritical and subcritical Hopf bifurca-
tions, respectively.

ay=(x—rm/(1+x),

ar=(1+r )/(1+y), . . .
" Z1+e(Z—1)Z1+ Z, 411D 1(Zy) + 26N 11 1 ®@2(Z2) Z,

az=x(1+rm)/(1+x), =Fqocod) T (2a)

= (1= )/ (14 ), and

where x is the coefficient of restitution and,=m,/m,, is Zyt 11 @y (Z) /Tt 28cNT 1 [T m®2(Z22)Z,=24,  (2b)

the mass ratio.

An alternative way of modeling an impact damper would where
be through the introduction of a spring and a linear viscous
damper as shown in Fig(ld). In this model, the time interval
of contact(betweenm, and the container sidewallsluring
collision is nonzero. The differential equations describing the
motion of such a system are written in the following nondi- ®,(Z;)=U(Z,—do)+U(—Z,—dy),
mensional form:

®1(Z,)=(Z,—dg)U(Z,—dp) +(Z2+dp)U(—Z,—dp),

whenU(-) is Heaviside’s step function defined as

2.50

3.5

P Q.00

-3.50
) 6500.00 7750.00 9000.00

-2.5
200.00 550.00 900.00

ot T

FIG. 3. Signature of type | intermittencye=0.1, r,,=0.1,
x=0.35,d,=0.77

FIG. 5. Signature of type Il intermittency()=1, x=0.7,
FO=O.5,I’m=O.25,d0=2.49.
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FIG. 8. Bifurcation set inFg—( plane.x=0.7,¢=0.1. AB—
supercritical Hopf bifurcationB C—subcritical Hopf bifurcation,
CA—subcritical pitchfork bifurcation:dg=1.6, r,,=0.45. EF—
supercritical Hopf bifurcationE G F—subcritical Hopf bifurcation:

FIG. 6. Scaling law of type Il intermittency. The parameter val-
ues are given in Fig. 5.

U)=1 Vv¢>0 do=2.9, r =0.25.
0 V<0 In(
X)
£.=Cy/2Komy=— . (3
andr;=K,/K,, Z,=(X;—X,)/X, and the damping ratig, is o TESNEET (L {7+ [In(x)I*HY?

obtained in terms of the coefficient of restitutign(used in i . ) . .
the first model as[9] This expression is valid except in a small neighborhood of

x=0.
With a very high numerical value of, [~0(10°)] in Egs.

4.00 T 3.80 M -025 (2), the results obtained from both models described above
are found to be quite close. However, it has been seen that
the second model described by E(®. offers special advan-
tages over Eq91) during numerical integration.

d 2.75 - d 2.25 E

{+] (]
m=08 Ill. RESULTS AND DISCUSSIONS
(0) ? An analytical method based on the equivalent piecewise
159 555 540 109 L linearization (EPL) technique[10] is used to construct the
. 4 106 0.4 0.22 . . .
€ € periodic solutions of Eqg1) and the method of error propa-
6.0 T gation[10] is used to analyze the stability of these solutions.
A fourth order Runge-Kutta-Merson algorithm with adaptive
Fo= 09 . . . - .
step size control is used for numerical integration of Egs.
This revealed different types of intermittency routes to chaos
do 4.0l = which are discussed below.
m A. Type | intermittency
20 @ First consider the autonomous vibration, i.E4=0. It
‘010 Oée 025 should be noted that due to the self-excitation provided by

the van der Pol type damping force, this autonomous vibra-
tion can be sustaine@h the form of a so-called limit cyc)e
FIG. 7. Bifurcation sets ine—d, plane. Q=1. (8 F,=0.5,  Ihe analytically obtained bifurcation set in the-d,) space
rm=0.25; (b) Fy=0.5, x=0.7; (¢) x=0.7,r,=0.25. —Hopf bifur- IS shown in Fig. 2. The details of the analytical method,
cation (the upper line corresponds to supercritical bifurcation andavailable in Refs[10] and[11], are omitted here. One ob-
the lower line corresponds to subcritical bifurcalion- - pitchfork  tains several windows of periodic solutions having a period
bifurcation (subcritica). of approximately 6.6. Only two such windows are shown in
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Fig. 2. The number of collisions per cycle for window 1 is pears. In the present case, the boundeiByturns out to be a
different from that for window 2. The parameter regimessupercritical bifurcation line since the subsequent motion
separating the periodic windows correspond to various comwas found to be strictly quasiperiodic. However, when a pa-
plicated dynamics including chaos. The right stability bound-rameter is variedhere d, is decreased while keeping,
ary of each such window is shown to correspond to a saddlezonstant across the boundai@D, an intermittent evolution
node instability. For a constant value gfif d, is increased appears. Such an intermittent signature is shown in Fig. 5. A
across these saddle-node boundaries, type | intermittency ocloser look into the signature reveals two distinct phases of
curs as also confirmed by numerical simulations. One sucthe motion. One of these consists of a frequency modulated
intermittent signature is shown in Fig. 3. The average lami-oscillation (so called laminar phagewnith diverging enve-
nar length({(/)) of this type of intermittency is found to lopes. Two such phases are punctuated by other phases
comply with the law which are apparently disorderédhaotic phase According
s to the classical Pomeau-Mannevill&-3] categorization of
(/)~p° with 6~0.520-0.001, different types of intermittencies based on local bifurcations,
the present intermittency is of a type Il since the preceding
bifurcation is a Hopf bifurcation. This indirectly implies that
the Hopf bifurcation on the bounda@D is subcritical. It
can be seen from Fig. 6 that the average length of the
B. Type Il intermittency laminar phases complies with the following scaling law pre-
From this section onwards only the forced system will bedicted by Pomeau-Manneville:
considered by assigning a nonzero valuégf It was found (/) ~In(1/
that in a significantly wide parameter zone, stable symmetric
solutions having two qollisions per cycle_ occur. The zone wahere,uzdo— ¢ andd§ is the bifurcation threshold. Here,
the stable solutions with symmetric two impacts per cycle iS; js worth mentioning that though the type Il intermittency is
delineated in the r(,—do) plane as shown in Fig. 4. The nown to exist, it rarely occurs in physical systems. Only
Iopal stability analysis reveals that both the stab|llty bound—very few examples are found in the literatyire5).
aries(marked asAB and CD) correspond to Hopf bifurca-
tion. As the nonlinear stability analysis is too complicated, ) )
the nature of the bifurcation is not established analytically. C. Type Il intermittency
However, it is well known that two possibilities exist when a  The boundaries corresponding to a supercritical Hopf bi-
periodic motion encounters a Hopf bifurcatigsecondary furcation are delineated in Figs. 4, 7, and 8. When a param-
Hopf bifurcation or Neimark bifurcation Either a quasiperi- eter is varied (keeping the other constanicross these
odic motion result§when the bifurcation is supercritigabr ~ boundaries, the symmetric, two impacts per cycle solution
a more complicated evolutiofwhen the bifurcation is sub- bifurcates to a quasiperiodic solution. Such quasiperiodic
critical) having a local-global or entirely global feature ap- motions can lead to chaos with further variation of the con-

where u=dy,—dg and d§ is the bifurcation threshold. For
further details see Refl11].
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trol parameter beyond the bifurcation line. Several routes té\part from the above quasiperiodic route to chaos via inter-
chaos via quasiperiodicity have been reported in the literamittency, other types of quasiperiodic routes are also de-
ture[3,6,7,11,12 One of these routes shown in Fig. 9 is via tected in this model. One of the routésig. 11) depicts the
frequency locking. The period of the locked motion in Fig. continuous dispersal of the Poincaterates as the control
9(b) is five times that of the forcing. The locked motion may parameter is increased. This route complies with that of the

be destabilized in a number of ways leading to chaos. Howrayleigh-Benard convection:  structufedescribed in Ref.
ever, in the present study, the locked modes are seen to u

dergo intermittent transition to chaos. One such intermittent
motion is shown in Fig. 10 in terms of the time history of
Poincare’ iterates. It is seen from Fig(b® that the motion D. Intermittency after subcritical pitchfork bifurcation

just_before the onse_t of intermittency is of peri_od 5 _and the  The zones of the stable two impacts per cycle solution are
laminar phase of Fig. 10 corresponds to period[$@ice  jglineated in Fig. 8 in th&, vs Q plane. It can be analyti-

Z(i+10) remains constahtTherefore this intermittency is a1y shown that the bounda#B in this figure corresponds
identified to have arisen out of a subcritical half subharmonigy, 5 gyncritical pitchfork bifurcation. Immediately after this

instability, i.e., subcritical period doubling. Thus according bifurcation () is decreased across the boundary while keep-
to PM classification this is a type Il intermittency. The entire ing F, constan, the intermittent motion shown in Fig. 12

sequence may be summarized as follows: appears. In this figure, the time history of the Poindtee

periodic—quasiperiodie-locked mode ates(the so-called strobe map with the strobe frequetityis
plotted. This kind of intermittency produced by a subcritical
—intermittency—chaos. pitchfork bifurcation has not been reported so far.
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bifurcation viz., saddle-nodéype ), subcritical Hopf bifur-
cation (type Il), and subcritical period doubling bifurcation
Zl(“ (type IlI), of the fixed points of the map. However, the pitch-
o : fork bifurcation (or symmetry breakingof a periodic solu-
tion of a differential equation does not have any counterpart
in the bifurcation of a fixed point of a nonlinear map. Per-
00 s haps this is why no model has been studied for the prediction
1000 2000500 5000500 of the intermittency following a pitchfork bifurcation. An-
T other reason may be that the symmetry breaking is a nonge-
neric bifurcation in the sense that, it is structurally unstable
FIG. 12. Intermittency after subcritical pitchforsymmetry—  uUnder asymmetric perturbations however small. Of course,
breaking bifurcation. Fg=0.5, dy=1.6, r ,=0.45, s=0.1, y=0.7,  {or & more detailed study of the mechanism of this type of
0=0.9512. intermittency, a model should be based on a low dimensional
differential equation rather than a nonlinear map.

3,00

0.00

Theoretical models of the dynamics of intermittency have
been put forward by Pomeau-Manneville-3|. For describ- V. CONCLUSIONS
ing the mechanism of intermittency they used nonlinear Three different types of classical, PM intermittencies are
maps which may stand for the suitable Poincaagps of the  detected in a single mechanical model. The possibility of the
periodic solutions of an ordinary differential equation. In existence of a new kind of intermittency via a subcritical
their model, a kind of narrow channeling effect accounts fompitchfork bifurcation (symmetry breakingis demonstrated
the laminar phase and a proper reinjection principle explainthrough the present model. It is well known that a great deal
the recontinuation of the laminar phase after a chaotic bursbf hydrodynamic instabilities are related to different kinds of
As the whole mechanism is based on the availability of antermittency catastrophes and quasiperiodic transitions. The
suitable nonlinear map, only three types of intermittencypresent model, a purely mechanical one, demonstrates a va-
could be explained, each corresponding to a type of localiety of similar instabilities.
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