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All three different types of classical, Pomeau-Manneville intermittencies along with a fourth kind following
a subcritical pitchfork bifurcation have been identified in a single mathematical model. The mathematical
model corresponds to a van der Pol oscillator with an impact damper.
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I. INTRODUCTION

Nonlinear systems are capable of exhibiting different
kinds of instabilities and catastrophes which lead to compli-
cated dynamic evolutions. Intermittency catastrophes occupy
an important place in the whole spectrum of these dynamic
complexities. A temporal intermittency signature is charac-
terized by phases of regular oscillation~so called laminar
phases! interrupted by chaotic bursts. A comprehensive theo-
retical model of intermittency was put forward by Pomeau
and Manneville~PM model! @1–3#. Three catastrophic~sub-
critical! local bifurcations viz., saddle-node, Hopf, and sub-
harmonic bifurcations are known to generate three types of
PM intermittencies viz., type I, II, and III, respectively. Ob-
servations of different kinds of intermittencies in experimen-
tal and theoretical models@4–7# have supported the above
mentioned theory. It is now known that many hydrodynamic
instabilities~as well as solid-mechanical and electrical insta-
bilities! are related to these intermittencies. But no single
model is known to demonstrate all the three kinds of PM
intermittencies. It would be interesting to observe these in-
termittencies in a single model. The purpose of this paper is
to discuss such a model consisting of a van der Pol type
mechanical oscillator with an impact damper. Apart from the
three types of PM intermittencies, another new kind of inter-
mittency caused by a subcritical symmetry-breaking bifurca-
tion is also observed in this model.

II. EQUATIONS OF MOTION

An impact damper in the form of a loose secondary mass
is often used to control the vibrations of a mechanical oscil-
lator which may be linear, nonlinear or self-excited@8#. In
this paper, the primary vibrating system is modeled as a me-
chanical oscillator consisting of a mass~m1!, a linear spring
~of stiffnessK1! and a damper exerting a nonlinear, van der
Pol type damping force. This system is shown in Fig. 1~a!
where the prime denotes differentiation with respect to time
t. The massm1 is excited by a harmonic forceF cosvt. The
loose secondary massm2 goes into repeated collisions with
both ends of the container~fixed tom1! of lengthd. In this
process the response ofm1 is controlled by transfer of mo-
mentum and dissipation of energy. The differential equations
describing the motion of the system between two consecu-

tive collisions can be written in the following nondimen-
sional form:

Z̈11«Ż1~Z1
221!1Z15F0cos~Vt! ~1a!

and

Z̈p50 ;uZ12Zpu,d0 ~1b!

with v05(K1/m1)
1/2, x05Ag1, V5v/v0, F05F/(m1x0v 0

2)
«5e1x 0

2/(m1v0), Z15x1/x0 , Zp5x2/x0 , d05d/2x0 , t5v0t
and the dot denotes differentiation with respect tot. It may
be noted thatm2 is assumed to be a free particle, except at
the instants of collisions.

WhenuZ12Zpu5d0 , a collision occurs satisfying the fol-
lowing conditions:

Ż1
25a1Żp

21a2Żp
1,

Ż1
15a3Żp

21a4Żp
1,
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FIG. 1. van der Pol oscillator with an impact damper.~a! Zero

contact time,~b! finite contact time.
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where the superscripts1 and 2 denote, respectively, the
conditions after and before impacts. Using the conservation
of total linear momentum and the definition of the coefficient
of restitution it is easy to obtainai ’s as follows:

a15~x2rm!/~11x!,

a25~11rm!/~11x!,

a35x~11rm!/~11x!,

a45~12rmx!/~11x!,

wherex is the coefficient of restitution andrm5m2/m1 , is
the mass ratio.

An alternative way of modeling an impact damper would
be through the introduction of a spring and a linear viscous
damper as shown in Fig. 1~b!. In this model, the time interval
of contact~betweenm2 and the container sidewalls! during
collision is nonzero. The differential equations describing the
motion of such a system are written in the following nondi-
mensional form:

Z̈11«~Z1
221!Ż11Z11r 1F1~Z2!12jcAr 1rmF2~Z2!Ż2

5F0cosVt ~2a!

and

Z̈21r 1F1~Z2!/rm12jcAr 1 /rmF2~Z2!Ż25Z̈1 , ~2b!

where

F1~Z2!5~Z22d0!U~Z22d0!1~Z21d0!U~2Z22d0!,

F2~Z2!5U~Z22d0!1U~2Z22d0!,

whenU~•! is Heaviside’s step function defined as

FIG. 2. Windows of periodic solutions inx2d0 plane.rm50.1,
e50.1. Regions of periodic solutions are labeled by 1 and 2.

FIG. 3. Signature of type I intermittency.«50.1, rm50.1,
x50.35,d050.77

FIG. 4. Bifurcation set inrm2d0 plane.V51, x50.7,F050.5,
«50.1. The zone enclosed between the linesAB andCD corre-
sponds to stable symmetric motion with two impacts per cycle.AB
andCD correspond to supercritical and subcritical Hopf bifurca-
tions, respectively.

FIG. 5. Signature of type II intermittency.V51, x50.7,
F050.5, rm50.25,d052.49.
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U~z!51 ;z.0

50 ;z,0

andr 15K2/K1 , Z25(x12x2)/x0 and the damping ratiojc is
obtained in terms of the coefficient of restitutionx ~used in
the first model! as @9#

jc5C2/2AK2m252
ln~x!

„~11rm!$p21@ ln~x!#2%…1/2
. ~3!

This expression is valid except in a small neighborhood of
x50.

With a very high numerical value ofr 1 @;o~105!# in Eqs.
~2!, the results obtained from both models described above
are found to be quite close. However, it has been seen that
the second model described by Eqs.~2! offers special advan-
tages over Eqs.~1! during numerical integration.

III. RESULTS AND DISCUSSIONS

An analytical method based on the equivalent piecewise
linearization~EPL! technique@10# is used to construct the
periodic solutions of Eqs.~1! and the method of error propa-
gation@10# is used to analyze the stability of these solutions.
A fourth order Runge-Kutta-Merson algorithm with adaptive
step size control is used for numerical integration of Eqs.~2!.
This revealed different types of intermittency routes to chaos
which are discussed below.

A. Type I intermittency

First consider the autonomous vibration, i.e.,F050. It
should be noted that due to the self-excitation provided by
the van der Pol type damping force, this autonomous vibra-
tion can be sustained~in the form of a so-called limit cycle!.
The analytically obtained bifurcation set in the~x2d0! space
is shown in Fig. 2. The details of the analytical method,
available in Refs.@10# and @11#, are omitted here. One ob-
tains several windows of periodic solutions having a period
of approximately 6.6. Only two such windows are shown in

FIG. 6. Scaling law of type II intermittency. The parameter val-
ues are given in Fig. 5.

FIG. 7. Bifurcation sets in«2d0 plane. V51. ~a! F050.5,
rm50.25; ~b! F050.5, x50.7; ~c! x50.7, rm50.25. —Hopf bifur-
cation ~the upper line corresponds to supercritical bifurcation and
the lower line corresponds to subcritical bifurcation!, - - - pitchfork
bifurcation ~subcritical!.

FIG. 8. Bifurcation set inF02V plane.x50.7, «50.1. AB—
supercritical Hopf bifurcation,BC—subcritical Hopf bifurcation,
CA—subcritical pitchfork bifurcation:d051.6, rm50.45. EF—
supercritical Hopf bifurcation,EGF—subcritical Hopf bifurcation:
d052.9, rm50.25.

4364 53S. CHATTERJEE AND A. K. MALLIK



Fig. 2. The number of collisions per cycle for window 1 is
different from that for window 2. The parameter regimes
separating the periodic windows correspond to various com-
plicated dynamics including chaos. The right stability bound-
ary of each such window is shown to correspond to a saddle-
node instability. For a constant value ofx, if d0 is increased
across these saddle-node boundaries, type I intermittency oc-
curs as also confirmed by numerical simulations. One such
intermittent signature is shown in Fig. 3. The average lami-
nar length~^l &! of this type of intermittency is found to
comply with the law

^l &;m2d with d;0.52060.001,

wherem5d02d 0
c and d 0

c is the bifurcation threshold. For
further details see Ref.@11#.

B. Type II intermittency

From this section onwards only the forced system will be
considered by assigning a nonzero value ofF0. It was found
that in a significantly wide parameter zone, stable symmetric
solutions having two collisions per cycle occur. The zone of
the stable solutions with symmetric two impacts per cycle is
delineated in the (rm2d0) plane as shown in Fig. 4. The
local stability analysis reveals that both the stability bound-
aries~marked asAB andCD! correspond to Hopf bifurca-
tion. As the nonlinear stability analysis is too complicated,
the nature of the bifurcation is not established analytically.
However, it is well known that two possibilities exist when a
periodic motion encounters a Hopf bifurcation~secondary
Hopf bifurcation or Neimark bifurcation!. Either a quasiperi-
odic motion results~when the bifurcation is supercritical! or
a more complicated evolution~when the bifurcation is sub-
critical! having a local-global or entirely global feature ap-

pears. In the present case, the boundaryAB turns out to be a
supercritical bifurcation line since the subsequent motion
was found to be strictly quasiperiodic. However, when a pa-
rameter is varied~here d0 is decreased while keepingrm
constant! across the boundaryCD, an intermittent evolution
appears. Such an intermittent signature is shown in Fig. 5. A
closer look into the signature reveals two distinct phases of
the motion. One of these consists of a frequency modulated
oscillation ~so called laminar phase! with diverging enve-
lopes. Two such phases are punctuated by other phases
which are apparently disordered~chaotic phase!. According
to the classical Pomeau-Manneville@1–3# categorization of
different types of intermittencies based on local bifurcations,
the present intermittency is of a type II since the preceding
bifurcation is a Hopf bifurcation. This indirectly implies that
the Hopf bifurcation on the boundaryCD is subcritical. It
can be seen from Fig. 6 that the average length^l & of the
laminar phases complies with the following scaling law pre-
dicted by Pomeau-Manneville:

^l &; ln~1/m!,

wherem5d02d 0
c andd 0

c is the bifurcation threshold. Here,
it is worth mentioning that though the type II intermittency is
known to exist, it rarely occurs in physical systems. Only
very few examples are found in the literature@4,5#.

C. Type III intermittency

The boundaries corresponding to a supercritical Hopf bi-
furcation are delineated in Figs. 4, 7, and 8. When a param-
eter is varied ~keeping the other constant! across these
boundaries, the symmetric, two impacts per cycle solution
bifurcates to a quasiperiodic solution. Such quasiperiodic
motions can lead to chaos with further variation of the con-

FIG. 9. Quasiperiodic route to chaos via fre-
quency locking. F050.5, d051.67, rm50.45,
«50.1, x50.7. ~a! V51.12, ~b! V51.125, ~c!
V51.138.
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trol parameter beyond the bifurcation line. Several routes to
chaos via quasiperiodicity have been reported in the litera-
ture @3,6,7,11,12#. One of these routes shown in Fig. 9 is via
frequency locking. The period of the locked motion in Fig.
9~b! is five times that of the forcing. The locked motion may
be destabilized in a number of ways leading to chaos. How-
ever, in the present study, the locked modes are seen to un-
dergo intermittent transition to chaos. One such intermittent
motion is shown in Fig. 10 in terms of the time history of
Poincare’ iterates. It is seen from Fig. 9~b! that the motion
just before the onset of intermittency is of period 5 and the
laminar phase of Fig. 10 corresponds to period 10@since
Z( i110) remains constant#. Therefore this intermittency is
identified to have arisen out of a subcritical half subharmonic
instability, i.e., subcritical period doubling. Thus according
to PM classification this is a type III intermittency. The entire
sequence may be summarized as follows:

periodic→quasiperiodic→locked mode

→intermittency→chaos.

Apart from the above quasiperiodic route to chaos via inter-
mittency, other types of quasiperiodic routes are also de-
tected in this model. One of the routes~Fig. 11! depicts the
continuous dispersal of the Poincare´ iterates as the control
parameter is increased. This route complies with that of the
Rayleigh-Benard convection: structureC described in Ref.
@3#.

D. Intermittency after subcritical pitchfork bifurcation

The zones of the stable two impacts per cycle solution are
delineated in Fig. 8 in theF0 vs V plane. It can be analyti-
cally shown that the boundaryAB in this figure corresponds
to a subcritical pitchfork bifurcation. Immediately after this
bifurcation~V is decreased across the boundary while keep-
ing F0 constant!, the intermittent motion shown in Fig. 12
appears. In this figure, the time history of the Poincare´ iter-
ates~the so-called strobe map with the strobe frequencyV! is
plotted. This kind of intermittency produced by a subcritical
pitchfork bifurcation has not been reported so far.

FIG. 10. Type III intermit-
tency. The parameter values are
given in Fig. 9~c!.

FIG. 11. Quasiperiodic route to chaos.
F050.5, V51, rm50.25, x50.6, «50.1. ~a!
d053.35, ~b! d053.37, ~c! d053.38, ~d!
d053.39.
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Theoretical models of the dynamics of intermittency have
been put forward by Pomeau-Manneville@1–3#. For describ-
ing the mechanism of intermittency they used nonlinear
maps which may stand for the suitable Poincare´ maps of the
periodic solutions of an ordinary differential equation. In
their model, a kind of narrow channeling effect accounts for
the laminar phase and a proper reinjection principle explains
the recontinuation of the laminar phase after a chaotic burst.
As the whole mechanism is based on the availability of a
suitable nonlinear map, only three types of intermittency
could be explained, each corresponding to a type of local

bifurcation viz., saddle-node~type I!, subcritical Hopf bifur-
cation ~type II!, and subcritical period doubling bifurcation
~type III!, of the fixed points of the map. However, the pitch-
fork bifurcation ~or symmetry breaking! of a periodic solu-
tion of a differential equation does not have any counterpart
in the bifurcation of a fixed point of a nonlinear map. Per-
haps this is why no model has been studied for the prediction
of the intermittency following a pitchfork bifurcation. An-
other reason may be that the symmetry breaking is a nonge-
neric bifurcation in the sense that, it is structurally unstable
under asymmetric perturbations however small. Of course,
for a more detailed study of the mechanism of this type of
intermittency, a model should be based on a low dimensional
differential equation rather than a nonlinear map.

IV. CONCLUSIONS

Three different types of classical, PM intermittencies are
detected in a single mechanical model. The possibility of the
existence of a new kind of intermittency via a subcritical
pitchfork bifurcation ~symmetry breaking! is demonstrated
through the present model. It is well known that a great deal
of hydrodynamic instabilities are related to different kinds of
intermittency catastrophes and quasiperiodic transitions. The
present model, a purely mechanical one, demonstrates a va-
riety of similar instabilities.
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FIG. 12. Intermittency after subcritical pitchfork~symmetry–
breaking! bifurcation.F050.5, d051.6, rm50.45, «50.1, x50.7,
V50.9512.
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